Integration within Polygonal Finite Elements
نویسنده
چکیده
Engineering mechanics formulations of aerospace industry problems overwhelmingly rely upon spatial averaging techniques. Crucial applications in the area of dynamic response analysis and stochastic estimation of material degradation can be cited as important cases. Integration procedures on finite domains underlie physically acceptable averaging processes. Unlike one-dimensional cases, integrals within arbitrary areas and volumes cannot be approximated by a Gaussian form of numerical quadrature. Here the divergence theorem is applied once and twice, respectively, for polygonal and polyhedral integration domains, to construct integrals on boundary wireframes. The sum of Gaussian quadrature values on linear segments of the wireframe yields the final result of numerical integration on a finite element. DOI: 10.1061/!ASCE"0893-1321!2003"16:1!9" CE Database keywords: Finite elements; Boundary element method; Polygons; Computation.
منابع مشابه
Extended Finite Element Method for Statics and Vibration Analyses on Cracked Bars and Beams
In this paper, the extended finite element method (XFEM) is employed to investigate the statics and vibration problems of cracked isotropic bars and beams. Three kinds of elements namely the standard, the blended and the enriched elements are utilized to discretize the structure and model cracks. Two techniques referred as the increase of the number of Gauss integration points and the rectangle...
متن کاملImpact of Integration on Straining Modes and Shear-Locking for Plane Stress Finite Elements
Stiffness matrix of the four-node quadrilateral plane stress element is decomposed into normal and shear components. A computer program is developed to obtain the straining modes using adequate and reduced integration. Then a solution for the problem of mixing straining modes is found. Accuracy of the computer program is validated by a closed-form stiffness matrix, derived for the plane rectang...
متن کاملRecent Advances in the Construction of Polygonal Finite Element Interpolants
This paper is an overview of recent developments in the construction of finite element interpolants, which are C-conforming on polygonal domains. In 1975, Wachspress proposed a general method for constructing finite element shape functions on convex polygons. Only recently has renewed interest in such interpolants surfaced in various disciplines including: geometric modeling, computer graphics,...
متن کاملPolygonal finite elements for finite elasticity
Nonlinear elastic materials are of great engineering interest, but challenging to model with standard fi nite elements. The challenges arise because nonlinear elastic materials are characterized by nonconvex stored-energy functions as a result of their ability to undergo large reversible deformations, are incompressible or nearly incompressible, and often times possess complex microstructures. ...
متن کاملConforming polygonal finite elements
In this paper, conforming finite elements on polygon meshes are developed. Polygonal finite elements provide greater flexibility in mesh generation and are better-suited for applications in solid mechanics which involve a significant change in the topology of the material domain. In this study, recent advances in meshfree approximations, computational geometry, and computer graphics are used to...
متن کامل